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ABSTRACT

To obtain cost effective strapdown navigation, guidance and stabilization

systems to meet anticipated future needs a standardized modularized strapdown

system concept is proposed. Three performance classes, high, medium and low,

are suggested to meet the range of applications. Candidate inertial instruments are

selected and analyzed for interface compatibility. Electronic packaging and

processing, materials and thermal considerations applying to the three classes

are discussed and recommendations advanced. Opportunities for automatic fault

detection and redundancy are presented. The smallest gyro and accelerometer
3 3

modules are projected as requiring a volume of 26 in and 23. 6 in . respectively.

Corresponding power dissipation is projected as 5 watts and 2. 6 watts, respectively.
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CHAPTER 1

INTRODUCTION

1.1 Task Identification and Description

Tasks 4, 5 and 6 (see Preface) of contract modification number 8 describe

the Inertial System Strapdown Concept effort. The basis for determining the study

requirements was developed from consideration of the history, current status and

future applications of inertial guidance, navigation and control systems. Historically

these inertial systems have been developed individually to meet the specific

requirements of the manned space, booster, satellite or entry vehicle with which

they were intended to function. Implementation of similar functions in the various

systems have reflected the individual decisions made for each system. Standardization

even at the lowest level was non-existent. For example, Table 1.1-I lists

representative applications that have employed strapdown systems; sponsors, purpose

and gyro types. This state of affairs can probably be considered normal for rapidly

develboping art, but the burgeoning number and variety of current and proposed system

applications; space shuttle, scientific and observation satellites and guided vehicles

of all kinds, make it increasingly evident that the possibility of a better long run

approach needs to be explored.

Recognizing the broad spectrum of individual system performance requirements

which might be specified and the cost constraints which are necessarily being applied,

this study sought to determine the feasibility of creating a standard strapdown gyro

and accelerometer module concept, with suitable performance and interface

requirements, that would encompass the requirements for a wide variety of potential

inertial system applications. A fundamental goal was to determine if a standardization

approach that would enable the use of proprietary and non-proprietary vendor

instrument sources on an interchangeable basis was possible. The competitive cost

and logistic advantages inherent in such a potential are self-evident. Thus, as a

first step, Task 4 calls for the identification of currently available production or

developmental instruments that would be candidates for a standardized module design,

their respective design and performance features, their mechanical, electrical and

thermal interface and the prospects for application compatibility.

On the basis of the results of Task 4, the objective in Task 5 was to develop

the concepts and ground rules which shoild apply to the module design, taking into

account such elements as system applications, performance requirements, electronic

design and packaging, thermal control requirements, integration level, design and

acquisition costs and module size, weight and power requirements.
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Table 1. 1-I Strapdown Inertial Systems Deployment
Representative Milestones For Strapdown Systems'

Sponsoring
Category Mision Agency/Gyro Function Configurtion dentifyro Gyro Tye'

y (vehile) User

Launch Agena B USAF/Lockheed Guidance, Strapdown (3) Honeywell GG76 SDF-RI

vehicles Flight control

and Guidance, Strapdown (3) 2 Honeywell CG76 SDF-RI
boosters Flight control

1 Honeywell GG87

Agena USAF/Lockheed Guidance, Strapdown (3) Kearfott 2564 SDF-RI

Flight control

Navigation, Strapdown (3) Honeywell GG-334 SDF-RI
Guidance,

Flight control

Atlas LeRC/Convair Flight control, Strapdown (3) Honeywell GG87 SDF-RI

(SLV-3A) Stabilization Strapdown (3) Nortronics CRH4T SDF-rate

Burner 2 USAF/Boeing Guidance Strapdown (3) Honeywell GG-49 SDF-RI

Centaur LeRC/Convair Guidance, Platform (3) Honeywell GG-49 SDF-TB
Attitude reference

Delta NASA/Douglas Guidance Strapdown (3) Hamilton Std. SDF-R::
RI-1139E

Saturn IB MSFC/Chrysler Guidance, Platform (3) Bendix AB-5-K4 SDF-DRI
Stabilization Strapdown (9) Nortronics GRH4T SDF-ra:e

Saturn V MSFC/Boeing Stabilization, Strapdown (9) Nortronics GRH14T SDF-rate
Guidance, Platform (3) Bendix AB-5-K8 SDF-DRI
Navigation

Scout LaRC/LTV Guidance, Strapdown (3) Honeywell GG87 SDF-R:
Stabilization Strapdown (3) SDF-rate

Titan IIIB USAF/Martin Guidance Strapdown (3) Kecarfott 2536 SDF-R:
(wide angle)

Stabilization Strapdown (5) Kearfott 2536 SDF-Ri
(rate)

Titan IIIC USAF/Martin Guidance Platform (3) Delco 651G SDF-R
Stabilization Strapdown (5) Kearfott 2536 SDF-R.

(rate)

IRI = rate-integrating; DRI = double rate-integrating.

Table extracted from NASA-SP-8096 "Space Vehicle Gyroscope Sensor Applications"
by William C. Hoffman and Walter M. Hollister
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Table 1.1-I - (continued)

Sponsoring Configuration Gyro GyroType

Category n Agency/Gyro Function Cyro-Type
(vehicle) UsAgeny/Gyro Function (number) Identification

User

Space- Apollo CM MSC/NAR Navigation, Platform (3) AC 25IRIG SDF-RI

craft Stabilization

Stabilization, Strapdown (3) Honeywell GG248 SDF-RI

Display (wide angle
or rate)

Stabilization, Strapdown (3) Honeywell GG248 SDF-RI

Display (rate)

Stabilization Strapdown (3) Kearfott 2021 SDF-rate

Apollo LM MSC/Grumman Navigation, Platform (3) AC 251RIG SDF-RI

Stabilization

MSC/TRW Navigation, Strapdown (3) Hamilton Std. SDF-RI

Stabilization RI-1139

ATM MSFC Pointing, Strapdown (3) Kearfott 2519 SDF-RI

Stabilization

Biosatellite ARC/G.E. Attitude reference, Strapdown Honeywell JRT45 SDF-rate

Stabilization

ERTS GSFC/G.E. Stabilization, Strapdown (1) Kearfott 2564 . SDF-RI

Attitude reference,
Initial stabilization Strapdown (1) Nortronics GRH4 SDF-rate

Explorer GSFC/ Stabilization Strapdown Honeywell JRT45 SDF-rate

31

Gemini MSC/McDonnell Stabilization Strapdown (6) Honeywell MS-133 SDF-rate

Navigation Platform (3) Honeywell GG-8001 SDF-RI

Lunar LaRC/Boeing Attitude reference, Strapdown (3) Sperry SYG-1000 SDF-RI

Orbiter Stabilization, Kearfott 2564 SDF-RI

Pointing

Mariner JPL Stabilization, Strapdown (3) Kearfott 2565 SDF-RI

Attitude reference,
Pointing

Mercury MSC/McDonnell Stabilization, Strapdown (3) Honeywell GG-79A SDF-rate

Attitude reference Strapdown (2) Honeywell GG-53 2DF-free

Attitude, Rate Strapdown (3) Honeywell MS-100 SDF-rate

display

Nimbus GSFC/G.E. Stabilization, Strapdown (1) Kearfott 2564 SDF-RI

Attitude reference,
Initial stabilization Strapdown (1) Nortronics GRII4 SDF-rate

OAO GSFC/Grumman Stabilization S;trapdown (3) Honeywell JRT45 SDF-rate

Attitude reference Strapdown (3) MIT 2FBG SDF-RI
Strapdown (3) Kearfott 2564 SDF-RI

OGO CSFC/TRW Stabilization Strapdown (1) Honeywell MS SDF-rate
130B1
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Table 1. 1-I - (continued)

Sponsoring
Category Mission Agency/Gyro Function Configuration Gyro Gyro Type'

ategoy (vehicle) User (number) Identification

Space-
.craft

OGO GSFC/TRW Pointing Strapdown (2) Honeywell GG49 SDF-RI

OSO GSFC/Ball Bros. Stabilization S~rapdown (1) Bendix 251RIG SDF-RI

OSO-3 GSFC/Hughes Pointing Strapdown (1) Northrop GI-K7G SDF-RI

Ranger JPL Stabilization, SrTapdown (3) Honeywell GG49 SDF-RI
Attitude reference,
Pointing

Skylab MSFC/Douglas Pointing, Sirapdown (9) Kearfott 2519 SDF-RI
workshop Stabilization

Surveyor JPL/Hughes Attitude reference, Strapdown (3) Kearfott 2514 SDF-RI
Stabilization

Viking LaRC/Martin Inertial reference S.rapdown (4) Hamilton Std. SDF-RI
Lander RI-1139S

Viking LaRC/JPL Attitude reference, Strapdown (6) Kearfott 2565 SDF-RI
Orbiter Stabilization,

Pointing

Entry ASSET USAF/ Stabilization, S:rapdown (3) Honeywell SDF-rate
vehicles McDonnell Flight termination, S rapdown (1) Giannini 151D 2DF-free

Guidance S rapdown (3) Honeywell SDF-RI

DynaSoar USAF/Boeing Guidance, Flatform (3) Honeywell 8001 SDF-RI
Backup guidance S:rapdown (2) Bendix 19008 2DF-free

HL-10 FRC/Northrop Stabilization S rapdown U.S. Time SDF-rate

M2-F2 FRC/Northrop Stabilization Strapdown U.S. Time SDF-rate

M2-F3 FRC/Martin Stabilization Strapdown (9) 'Nortronics GRH4T SDF-rate

PRIME USAF/Martin Guidance Strapdown (3) Honeywell GG87 SDF-RI

X-15 FRC/No. Navigation, P atform (3) Honeywell 8001 SDF-RI
American Stabilization Strapdown (3) Nortronics GRH4T SDF-rate

X24A/ USAF-FRC/ Stabilization Strapdown (9) Nortronics GRH4T SDF-rate
SV-5 P Martin
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Table 1.1-I- (continued)

Sponsoring
Category Mission nngConfiguration GyroCategory Agency/Gyro Function ConfigurationGyro Type

(vehicle) User (number) Identification

Sounding Aerobee GSFC/Ball Bros. Pointing, Platform (2) Conrac 34646H-04 2DF-frce
rockets [50/170/ (Strap III) Stabilization Strapdown (3) VARO 1005435-01 SDF-rate

350 Fine pointing Strapdown (2) Honeywell GG 87 SDF-RI

Aerobee AFCRL/NRL/ Pointing, Platform (2) Whittaker FM10G-2 2DF-free
Space General Stabilization Strapdown (3) U.S. Time Model 40 SDF-rate
( Mark II)

Aerobee Space General Pointing Strapdown (1) Whittaker FM1OG-2 2DF-free
t50/170 (Mark III) Strapdown (3) U.S.Time Model 40 SDF-rate

A -robee Kitt Peak/ Pointing Platform (3) VARO SDF-rate
:50/170 Ball Bros.

(SPCS-1)

Arrobee Ball Bros. Pointing, Strapdown (1) Condor Pacific SDF-rate
150/170 (SPCS-2) Stabilization R8-93AA-1

Nike-
'Toma-
hawk

Nike- GSFC/Space Pointing Platform (2) Space Vector 2DF-free
'oma- Vector Corp. MARS I
hawk (SPT)
Black
Brandt III

Task 6 contemplates the creation of a design requirements document based

on the results from Tasks 4 and 5 and to include preliminary design layouts of

gyroscope and accelerometer modules incorporating these requirements.

The entire study is restricted to strapdown inertial systems, as indicated by

the title, as opposed to gimbal inertial systems. This approach is dictated by two

specific considerations which point to the strapdown (or body mounted) configuration

as the proper approach to the modularization and standardization of inertial system

design. These considerations are described in the following paragraphs.

1. Mounting arrangement. The strapdown configuration lends itself naturally

to a convenient and accessible arrangement of interchangeable modules

with built-in alignment features. To accomplish an equivalent degree

of plug-in accessibility and interchangeability in a gimbal system is

difficult if not impossible.

2. Performance. The strapdown system can, by proper choice of system

elements, provide performance to fulfill the mission requirements of

the bulk of current and future space applications. As illustrated in

Table 1.1-I, strapdown implementations have been successfully used on

5



numerous space missions for attitude referencing, stabilization, pointing

control and guidance. In addition, the strapdown system has inherent

fine attitude and attitude rate resolution and is readily configured to be

digital in nature while being less complex in electro-mechanical design

features. It can be expected to demonstrate a substantial reliability

improvement with maturing electronic and instrument designs.

6



CHAPTER 2

STANDARDIZED MODULARIZATION CONCEPT

2.1 Introduction

The basic modularity concept addressed in this study consists of a family of
standardized, function oriented, prealigned and calibrated submodules which are
capable of being assembled to form an inertial gyro or accelerometer sensor module,
complete and self-contained, needing onlyan input power source and a digital timing
or instruction word, and producing a digital word containing inertial data and module
self-test status. Within this gyro or accelerometer module, each submodule performs
a basic function (thermal control, excitation voltages, etc.) compatible with the
instrument and with performance and range suitable for the system application
requirements. The system would be configured by a suitable selection and integration
of modules, dependent on the application function (e.g. attitude reference, guidance,
etc.) and level of redundancy needed (e.g. a triad configured with three gyro modules
or a fault tolerant implementation using six gyro modules).

As an example to show in general the content and arrangement of a typical
instrument module, Fig. 2.1-1 presents a possible layout for a gyro module using
a candidate 1.3 in. diam. gyroscope. The submodules plug into the module structure
to provide wheel supply, pulse torque loop electronics, temperature control
electronics, suspension excitation supply, signal generator excitation supply, input/
output conditioning and clock/digital interface functions. Descriptions of the design
and performance characteristics of these elements are provided in Section 3.0.
The gyro is prenormalized to present a standard interface to the submodule
electronics. The means employed to accomplish the standardization, and the
instrument categories needed to cover, the range of system applications are covered
in Section 2.2.1.

2.2 Benefits from Standardized Modularization

The benefits which can be expected to result from a carefully planned and
skillfully executed program of standardized modular construction can be identified
in five principal categories. These categories are described below, and the discussion
indicates that substantial reductions in life cycle costs can be achieved with a minimum
of system performance constraints.

7



Dimensions 3" x 3" x 3"

Weight 1.5 lbs.

Power 4.7 W

-- Pulse Torque Loop

Scaler Buffer

Wheel Supply

Temperature
Controller GExcitation Supply

Fig. 2. 1-1 Miniature Strapdown Gyro Module

2.2.1 Design and Development

This category contains the extra effort required to take into consideration

the ranges of performance, the interface standardization, the interconnection

problems, the environmental and reliability factors and all the other features which

otherwise would only need be considered for a single set of system requirements.

The first step in the analysis of the design problem demanded a review of the

system performance range requirements with the objective of defining a limited

number of performance classes to cover the range of known and projected system

applications. This effort resulted in the following breakdown.

a. Long duration guidance, navigation, or attitude reference functions, where

updating is not possible or is very infrequent, requires an extremely stable

gyroscope and its associated torque loop. Systems in this category require a

state-of-the-art, high performance instrument and control loop technology.

Some anticipated extremely high performance applications, such as for the

Large Space Telescope, may even require additional development to achieve

the required performance. This group represents the highest performance

category.

8



b. Strapdown systems for aircraft navigation and satellite attitude reference

applications, where periodic updating can be provided and where navigation

performance between one and ten nautical miles per hour, or drift performance

between 0.01 0 /hr and 0.1 0 /hr is sufficient, can draw from a broad technology

base-of available instruments anrd torque -loop designs. A major portion of

the anticipated system applications falls into this second group.

c. A third category, comprising short memory guidance or flight control

system applications, can provide the necessary performance with modest

requirements for instrument and control loop stability. This application would

obtain its performance with navigation aided techniques such as DME or Loran.

They can use low cost inertial components with drift performance between

0.1 0 /hr and 1 deg/hr. There are many applications requiring low cost systems,

such as remotely piloted vehicles, that fall into this third group.

It is apparent, therefore, that, although the highest performance module could

probably meet the requirements for every application, it would not be cost effective

'in terms of size, weight, power, and reliability. It appears that three categories

represent a minimum complement, namely high performance, moderate performance

andlowperformance inertialinstrument modules. These modules need not be three

completely different designs. A reasonable level of common mechanical structure,
electronic submodules and logic components can be expected. The major variation

is predominantly determined by the instrument selected, as reflected in cost versus

performance.

The quantity of modules to be built for each class has been postulated to reflect
a level corresponding to an assumed DOD and NASA overall need. The recurring

cost projections have been set at achievable values corresponding to the volume

and performance needs. They are: high performance gyro modules ($50,000 to

$91,000 per module)*, assuming on the order of 60 are built per year; moderate

performance gyro or accelerometer modules ($10,000 to 22,000 per module),
assuming 600 are built per year; and low performance gyro or accelerometer modules

($2,000 to 4,000), assuming 3,000 are built per year. The distribution of these
costs are shown in Table 2.2-I. The designer will select electronics, components

and packaging techniques to meet the performance and cost goals for each module

class. To produce standardized modules would necessitate a non-recurring

No accelerometers in this price range are included in the study, and thus only two
classes of accelerometer modules are considered.

9



investment by the government in their design and development. The standardized

module could be used in multiple applications by NASA and DOD agencies at the

recurring costs shown in Table 2.2-I.

Table 2. 2-I Module Cost Estimates (Recurring Costs Only)

PERFORMANCE INSTRUMENT COST MODULE COST -QUANTITY
MODULES / YEARRANGE

LOW $ 500- 1,000 $ 2,000- 4,000 3,000

MODERATE $ 6, 000 - 12, 000 $ 12, 000 - 22, 000 600

HIGH $40, 000- 60, 000 $60, 000- 91, 000 60

THE MODULE COSTS HAVE BEEN ASSUMED DISTRIBUTED AS FOLLOWS:

COST DISTRIBUTION of MODULE -

LOW COST MODERATE COST HIGH PERF.

INERTIAL COMPONENT $ 500 - 1, 000 $ 6, 000 - 12, 000 $ 40, 000 - 60, 000

MECHANICAL HARDWARE $100 - 200 $ 500 - 1,000 $ 2, 000 - 3, 000

ELECTRONIC FABRICATION $ 400 - 800 $ 3, 000 - 4, 000 $ 5, 000 - 8, 000

TEST and ASSEMBLY $600 - 1, 200 $ 1, 500 - 3, 000 $ 8, 000 - 12, 000

ADMINISTRATION and PROFIT $ 400 - 800 $ 1, 000 - 2, 000 $ 5,000 - 8, 000

The second step in the study program required the identification of candidate

strapdown inertial instruments and an assessment of the parameter incompatibilities

which would have to be addressed in order to arrive at an interchangeable standardized

desi gn. The proprietary, candidate inertial instruments shown in Table 2.2-II

represent single degree-of-freedom gyros which have been manufactured and used

in sufficient quantities over the last five to fifteen years to have acquired a history

of successful operation and to have developed a mature design and manufacturing

process. Most of these gyros are available with variations adapted to specific input

voltages and frequencies so that standardization of some of these parameters would

10



Table 2. 2-II Candidate SDF Gyros For a Modular Strapdown System

PERFORMANCE

HIGH MODERATE LOW

PARAMETER UNITS TGG GG334A 18 Mod B K7G-3K 2544 2546 13 IRIG RI 1139D GIG 6 IG-10 GG111 1903HJ

Vendor CSDL Honeywell CSDL Northrop Kearfott CSDL UAC Northrop US Time Honeywell Lear Seigler

Size inches 3.
3

x2.4 4.7x2.3 3.9x2.0 2.9x1.66 2.5x1.4 2.5x1.3 3.5x2.68 2.2x1.0 2,0 x.94 2.4 x.2 3.2x1.5
(length x diameter)

Weight lbs 1.2 1.65 1.15 0. 625 0. 64 0. 33 1.5 0.25 0. 25 0. 25 0.44

H/C SSG mV/mrad 48 8.0 4.3 10.0 2. 7 0.8 14.0 12 100 10 20

Max Torque Rate rad/s 1/10 1 -1 '-1/4 - 7/4 4.7 - 5/6 - 3/4 1/3 7 3
(continuous)

Angular Momentum gm-cm2/s 5x105 2 x 10
5  

.5 x 105 0.6x 105 
6

x104 8.5 x 103 2.5x 105 2.2 x 104 2.3 x 104 10x 104 1. x 104

Time Constant microseconds 750 450 330 1220 200 1000 270 < 2000 3000 1500 5000



not constitute a major obstacle. A similar table showing some candidate ac-

celerometers, subdivided by system performance class is shown in Table 2.2-III.

The two new CSDL instruments, the 13 IRIG and the 12 PIP, and the Kearfott 2544

strapdown gyro do not at this time represent mature design nor a production base.

They have been included as candidates to facilitate design descriptions and estimates

for miniaturized systems.

Table 2. 2-III Candidate Accelerometers For a Modular Strapdown System

PERFORMANCE

MODERATE LOW

4810 2401 16 PM PIP 12 PM PIP GG177 QAl16-17 4303 GG326
PARAMETER UNITS

Systron- Kearfott CSDL CSDL Honeywell Kistler Systron- Honeywell
Vendor Donner Donner

Size orcubex inches 1 x1.2 x 2 1.3x1.6 2.1x1.6 1.8 x 1.2 1.8x1.8 1.9x1.0 1.5x.75 1.5xlxlorcubex2
sides x 2

Weight ounces 7 5 12 4 6 3 2 3

Range g's ±25 ±20 ±20 ±20 25 :15 15 I40

12



Tables 2.2-II and 2.2-III show the selected parameters of the candidate gyros

and accelerometers. The distribution of weights and volumes for these instruments

is shown in Figs. 2.2-1 and 2.2-2. It appears that two basic sizes of gyro modules

and one size of accelerometer module would accommodate all of these instruments

efficiently except for the GG334 and RI1139D units which would require a larger

module and a less efficient layout.

To the extent that the principal characteristics of the inertial instruments,

performance and size, determine the feasibility of the standardized modules, it

appears from the study thus far that two, or at most three, module sizes with sufficient

allowance for the electronic submodules required for operation, normalization and

interface compatibility will satisfy the requirements for high, moderate and low

performance systems. The proposed approach to the electronics design is covered

in Section 3.0.

2.2.2 Producibility Benefits

Having completed the design and development of two or three versions of the

standardized design to accommodate the sizes of the candidate instruments, the

benefits to be accrued became apparent. Benefits show up first in producibility

and are visible in the module and in the system. For the module we will have a

maximum of three sizes of mostly identical structures with mounting provisions

for standardized submodules to the extent that they are needed for a particular

system or choice of instrument. A similar situation exists for submodules, although

these will include a larger number of unique designs to provide for all of the necessary

functions. The major source of producibility benefit comes from the manufacturing

quantities involved as a result of standardization, making efficient tooling and

automated assembly economically feasible. Continuing volume requirements will

assure that an efficiently devised production effort operates effectively. At the

system level, benefits accrue from the modular construction which reduces the system

complexity to a primary structure containing routine accounting, control and display

functions, and standardized, plug-in, prealigned and pretested, inertial instrument

modules. Modules may be manufactured in-house or procured from multiple sources

to preserve a competitive cost base and reduce the delays due to procurement factors.

System testing and calibration is simplified by the use of the pretested, prealigned

and precalibrated modules. Moreover, trouble shooting need consist only of

substituting modules from stock. Failed units are returned to the component test

level for verification. This picture contrasts sharply with the serial type fabrication

and assembly procedures typical of gimbal systems and some current strapdown

systems. Even the CSDL redundant dodecahedron, SIRU system is limited in the

effectiveness of its modularity in comparison with the Standardized Modularized

Concept System.
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MANUF/MODEL GYRO WEIGHT (Ibs) GYRO VOLUME (in)

Honeywell GG1111 W .

Northrop GIG6 0I

Lear Seigler ( f1
1903HJ

US Time
IG-10

UAC
RI 1139D

CSDL 13 IRIG

Kearfott 2544,
2546

Northrop K7G I

CSDL 18.IRIG

Honeywell GG334

CSDL TGG E 10

Fig. 2.2-1 Weight and Volume of Typical Strapdown Gyros



MANUF/MODEL ACCELEROMETER WEIGHT (lb) ACCELEROMETER VOLUME (in. 3)

o LO ~P Q) W i 

Kistler QA116-17

Systron-Donner 4303

Honeywell GG326 1

Systron-Donner 4810

Kearfott 2401

CSDL 16 PM PIP O

CSDL 12 PM PIP

Honeywell GG177

Fig. 2. 2-2 Weight and Volume of Typical Strapdown Accelerometers



2.2.3 Maintainability Benefits

The cost effectiveness of the maintenance function is another benefit from

the strapdown standardized modularized concept, both at the system operating level

and at the module repair level. System maintenance, due to the convenience of the

software failure, detection and isolation (FDI) and built-in test equipment (BITE),

can be readily accomplished by flight line personnel by exchanging modules from a

spares kit. The only further action required would be software calibration updates

to introduce inertial instrument parameters, absolute biases, etc. It would probably

not be cost effective to require an absolute hardware normalization range on all

instruments. Automatic absolute calibration updates could be effected by

incorporation of programmable read only memory (ROM) modules. The inertial

sensor axes of the system thereby becomes a line replaceable unit with a mean

time to replacement (MTTR) of less than 10 minutes by relatively unskilled personnel.

This capability represents a significant improvement over present systems in which

repairs involving inertial instruments generally require the removal of the whole

inertial measurement unit (IMU) and its electronics rack. Replacement of the inertial

element in a typical current system requires disassembly, reassembly, recalibration,

and alignment of the IMU in the inertial navigation system (INS) rack before

reinstalling it in the vehicle. Field experience with current gimbal systems having

self-checking and failure identification features shows a significant percentage of

false removals. The integrated functional nature of the gimbal implementation tends

to make positive fault detection to a specific function difficult and in some cases

impossible.

At the module repair level, maintenance can be effectively accomplished at

intermediate support levels where electronic test equipment and spare submodules

are available. The faulty plug-in submodule can be identified by automatic checkout

equipment (ACE), rapidly disconnected and replaced. With the exception of the inertial

components and their normalizing components, the submodules would be completely

interchangeable without calibration or readjustment. This submodule

interchangeability permits the repair of a module, with the exception of replacing

an inertial component, to be accomplished at the intermediate (shop) maintenance

level. Replacement of an inertial component, along with its normalizing components,

or the repair of a failed submodule would be accomplished at the depot maintenance

level where specialized personnel with manufacturing and test equipment is available.

Spares requirements are also affected by the multiple usage of standardized

submodules. A relatively low percentage of operating spares can safely be maintained

at the intermediate level only. Coordinating the procurement of spares between

agencies is another possible source of savings in spares cost.
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2.2.4 Reliability Benefits

Improved system reliability can be confidently expected to result from the

standardized strapdown modular system concept.

Currently, each system, as delivered by its manufacturer, demonstrates over

an extended period of time a certain level of reliability determined by its design

and manufacture, environmental exposure and many other factors. Reliability

improvements may be incorporated as the system matures, but are not generally

transferable to other system designs. With the standardized strapdown modular

system, not only can greater attention be devoted to increasing the reliability of

each submodule, but also reliability data feedback can be implemented between system

users and manufacturers to trigger design, manufacturing and test improvements

which will be applicable to all systems in which the improved submodules are used.

The larger quantity usage of individual submodules will result in a more accurate

reliability assessment which permits the system design to specify the redundancy

requirements on the basis of accurate reliability projections. Module reliability is

achieved by choice of components, by the design of module and submodule intercon-

nections, by the application of burn-in processes and by the efficiency of the test

procedures employed. Failure analysis of generic design faults or weaknesses can

be used to enable rapid design and production changes based on failure experience.

Technical obsolescence in the submodules can be avoided by designs incorporating

new technology but retaining identical interfaces. Procurement problems in obtaining

components no longer stocked by suppliers is another troublesome aspect and with

standardization can be overcome by the same approach of design modification with

identical interfaces.

2.2.5 Compatibility Benefits

As has been described previously, module inputs and outputs are standardized

to consist of 28 Vdc and a digital timing word for input and inertial data and a

BITE or FDI word for output. This arrangement automatically provides a basis

for compatibility with all systems developed from the standardized modules. By

supplying the inertial information from one source, employing redundancy appropriate

to the mission, and eliminating the independent inertial sensors from such systems

as the flight control system, the attitude stabilization systems, load alleviation and

mode stabilization systems, perhaps as many as 10 to 20 inertial instruments with

their electronics, may be eliminated while at the same time providing improved

performance and higher reliability. If a redundant dodecahedron array were used,

integrated navigation, attitude reference and flight control sensing would be achieved
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using only 6 gyro and 6 accelerometer modules and yielding fail safe, fail safe, fail

operational (FS, FS, FO) reliability. The dodecahedron configuration could be

assembled using the standardized modules. The "dodecahedron" configuration is

based on a unique, symmetrical, geometric arrangement in which the instruments

sensing axes are arrayed to correspond to the angles that are made by the

perpendiculars to the faces of a dodecahedron. This configuration was demonstrated

in the SIRU system. In the SIRU system, a modular axis approach was utilized in

which instruments were packaged in prealigned modules and normalized with some

of their electronics, although not as comprehensively as projected in the standardized

module concept. Test results on the SIRU modules do serve, however, to demonstrate

the feasibility of the modular approach. For example, the performance repeatability

of the SIRU modules under various conditions, over several years of operation, has

beenimpressive. Figures 2.2-3A and 2.2-3B summarize the stabilities of the CSDL

SIRU modules, using the 18 IRIG Mod-B gyro, across remounting, cooldowns and

repetitive tests. Figure 2.2-3A shows the bias drift (NBD) and g-sensitive drift

(ADSRA, ADIA, and ADOA) stabilities. Figure 2.2-3B shows the major compliance

(g2), scale factor and input axis alignment stabilities that were obtained. Likewise,

Fig. 2.2-4 summarizes the stability of the SIRU accelerometer modules, using the

CSDL 16 PM PIP, across remounting, cooldown and repetitive tests. Alignment,

scale factor and bias stability data are shown. These data indicate that, for the

gyro/accelerometer module designs used, repeatability consistent with inertial grade

performance was obtained with module interchangeability.

Design description, redundancy management, test results and reliability data of
the SIRU system are covered in CSDL Report R746, Extension of the system to
include statistical FDI, Self Calibration, Self Alignment and Local Level Navigation
is presented in R747.

18



ACROSS AC ROSS STANDARD,
MOUNTING COOLDOWNS DEVIATIONS

RMS = 0. 06 RMS = 0. 05 RMS = 0. 03

-. 15 0 .15 -. 15 0 .15 0 .15

NBD (deg/hr)

RMS= 0. 06 RMS 0. 06 RMS 0. 04

-.15 0o .15 -. 15 0 .15 0 .15
ADSRA (deg/hr/g)

RMS= 0. 05 RMS= 0.08 RMS = 0.04

-. 3 0 .3 -. 3 0 .3 0 .3

ADIA (deg/hr/g)

RMS = 0.01 RMS = 0.01 RMS = 0. 005

S F Ph m R f 13 n,

-. 15 0 .15 -. 15 0 .15 0 .15

ADOA (deg/hr/g)
* No cooldowns or mountings

1 - 6 months.

Fig. 2. 2-3A Gyro Drift Performance-18 IRIG Mod B
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AC ROSS AC ROSS STANDARD

MOUNTING COOLDOWNS DEVIATION

RMS = 0. 03 RMS = .025 : RMS = .009

-. 15 0 .15 -. 15 0 .15 0 .15

COMPLIANCE (deg/hr/g
2

RMS = 30 RMS = 22 RMS = 10

-200 0 200 -200 0 200 0 2 0

SCALE FACTOR (ppm)

RMS 8 RMS 4 RMS= 2

-20 0 20 -20 0 20 0 20

ALIGNMENT (s'e)

* No cooldowns or mountings
I - 6 months.

Fig. 2. 2-3B Gyro Compliance, Scale Factor, and Alignment Data
18 IRIG Mod B Gyro
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AC ROSS AC ROSS STANDARD
MOUNTING COOLDOWNS DEVIATION*

RMS 12.9 RMS= 5. 2 RMS = 2. 0

-50 0 50 -50 0 50 0 50

MISALIGNMENT PENDULOUS AXIS (sec)

RMS= 13.4 RMS = 6. 7 RMS 2.0

-50 0 50 -50 0 50 0 50

MISALIGNMENT OUTPUT AXIS (s )

RMS 29 RMS 
= 

30 RMS =15

-100 0 100 -100 0 100 0 100

SCALE FACTOR (ppm)

RMS =21 RMS= 18 RMS =6

-100 0 100 -100 0 100 0 100

BIAS (cm/sec
2

Fig. 2. 2-4 Stability Data For 16 PM Accelerometer

21



CHAPTER 3

INSTRUMENT MODULE DESIGN STUDY

3.1 Introduction

The design study instituted to support the standardized, modularization concept

consisted of two principal areas of investigation and analysis. These two areas

are:

1. Comparison of candidate inertial instruments to define the relative

performance capabilities of each instrument, the problems associated

with providing a useful level of interchangeability and the possible

constraints on the successful implementation of a modularized system;

2. Presentation of the design aspects of the submodules required to

accommodate a wide variety of system performance parameters.

In order to constrain the study to manageable proportions, the candidate

instruments were limited to mature examples of single-degree-of-freedom types

with a reasonably broad production base and a recognized application history. This

approach introduces some additional apparent incompatibilities because the identified

instruments were designed for specific system configurations. However, it is

reasonable to assume that many of the electrical parameters, such as wheel

excitation, suspension and pickoff excitation, sensitivities and gains can be

standardized without imposing any unacceptable burden on the instrument

manufacturers. These changes should not significantly impact the basic instrument

design or affect the basic reliability of the instrument.

Many of the support requirements for accelerometer modules are similar to

the gyro module requirement. Although it can be argued that a combined gyro/ac-

celerometer module is more cost effective, the added complexity and reduced

flexibility of application resulted in a decision to retain only the independent

configurations for this study. For example, many applications, space satellites,
require only an attitude reference unit (ARU) or an ARU with a limited single axis

burn velocity measurement capability.

3.2 Instrument Selection and Parameter Compatibility

The key parameters and performance requirements for the selected candidate

instruments, divided into three performance classes, are tabulated in Tables 3.2-I

and 3.2-II.
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Table 3. 2-1 Performance Specifications For The Three Module Classes

LOW MODERATE HIGH
PERFORMANCE PERFORMANCE PERFORMANC

MODULE MODULE MODULE

Ma:. Torquing Rate (rad/sec) 1 1 0. 1

T. G. Current (mA) 170 140 150
S. C. Frequency (Hz) 4800 9600 6400
S. G. Voltage (V) 5 5 4. 5

Suspension (V/Hz) None 8 13. 6
9600 12, 800

Spin Motor

Frequency (Hz) 1600 1600 1600

Phase 2 2 or 3 2

Voltage (Vrms) 26 16 30
Power (W) 3 2.5 6

Temperature (OF) 120 160 135

Required Stability:

Temperature (OF) 5 0. 1 0. 01
Frequency (ppm) 100 1 0. 1
Motor Voltage (%) 5 1 0. 01

Signal Gen. (%) 5 1 0. 1

Suspension (%) None 1 0. 1

Torquer SF (ppm)

Stability 100 10 1
Linearity 1000 100 10

Table 3. 2-II Module Performance Goals

PERFORMANCE CATEGORY

Gyro Module LOW MODERATE HIGH
Gyro Module

Bias Drift Stability (1a )

1 week ( 0
/h) 3.0 0.03 C0. 001

1 day ( 0 /h) 1.0 0.01 <0. 001
1 hour (o/h) 0.1 <0.01 <0.001

Scale Factor Stability (ppm) 100 10 1
Scale Factor Rate Linearity

(0. 1 to full rate) ppm 1000 100 10
Alignment Stability (sec) 100 10 1
Maximum Torquing Range (rad/s) > 1 > 1 0.1

Accelerometer Module

Bias (I g) 1000 100 10
Scale Factor Stability (ppm) 100 10 1
* ignmen tan-tyo - 10 < 1

Maximum Acceleration Range (g) 20 20 5
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The principal constraints on the module dimensions and weight appear to be

instrument size and thermal control characteristics. Costs are affected if submodules

are required to standardize different instrument interfaces. Analysis shows that

one small module size could accommodate the low performance instruments and

two of the smaller medium performance instruments. A larger size module would

accommodate.two moderate performance instruments and the high performance

gyroscope. An even bigger module would be required for the Honeywell GG334 and

United Aircraft R11139D instruments. It appears that either two or perhaps three

sizes of modules are required to utilize the candidate instruments.

The gyro and accelerometer performance level for each of the performance

classes is shown in Table 3.2-II. The instruments in the moderate performance

class are roughly two orders of magnitude better than those in the low performance

class. Figure 3.2-1 shows the levels of short term, continuous operation, bias

drift stability that are projected for the candidate gyros.

3.3 Submodule Support Requirements

Functions required to support the inertial instrument in the module are

identified as submodules and for the purposes of this study are presumed to include

some or all of the following:

1. input/output conditioning

2. clock and digital interface

3. temperature controller

4. pulse torque electronics

5. pulse torque power supply (high performance module only)

6. signal generator excitation

7. suspension excitation supply (for instruments with magnetic suspensions)

8. wheel supply (for gyro modules only)

9. precision reference voltage supply

10. 28 Vdc conditioner

This complement of submodule designs is aimed at supporting the four

to seven wire interface, i.e. power in, data out. The data output is

mechanized for data bus type communication with the computer. For

all functions associated with the inertial component module, i.e. thermal

control, dc regulation must be performed by electronics in the

submodules.
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MANUF/ LOG OF SHORT TERM BIAS DRIFT STABILITY (deg/h)
MODEL

o
o o 0 * o
o o 0 0 *

IRIG

GGI111

Northrop OO
GIG6

Lear Seiglez
1903HJ

CSDL 13
IRIG

Kearfott
2544, 2546

Northrop I

CSDL 18 c
IRIG

Honeywell
GG334

Fig. 3. 2-1 Relative Short Term - Continuous Operation Bias Drift Stability



Each function is packaged as an independent, plug-in submodule with built-in self-test

provisions. In this analysis transformer coupling of wheel and pickoff supplies are

assumed although their bulk would be eliminated if the wheel phases and pickoff

circuits could be made fully floated. Another set of submodules would be required

in order to incorporate this option and it was not considered to be cost effective at

this time.

Figures 3.3-1 through 3.3-3 show block diagrams of the three classes of gyro

modules required to meet the supply stabilities and performance parameters shown

in Table 3.2-11. The high performance block diagram represents a system providing

the most stringent parameter control. Input 28 Vdc power is conditioned to 1%, a

special pulse torque power supply is included, provision for individual temperature

control of the PVR function has been made, zone temperature control is provided

and wheel, suspension and pickoff excitations are delivered through transformer-

coupled switch functions. The moderate performance module, Fig. 3.3-2, eliminates

the special pulse torque power supply, simplifies the temperature control function

to a single zone and no temperature control of the PVR function is required. The

low performance module, Fig. 3.3-3 is similar in construction to the moderate module

except that lower cost processing procedures can be employed, component screening

would be reduced, and temperature and suspension control would be.unlikely. The

cost saving choices and processing will be described in later sections.

3.4 Submodule Design Features

This section describes in additional detail the design considerations, component

selection and processing procedures applicable to the submodules to meet the specific

requirements of high, moderate and low performance modules. These submodules

are identified and presented as follows:

3.4.1 Input/Output Submodules

The input/output module receives data from, and sends data to the system

computer. With the technology expected to be available in the late 1970's, this

function could be performed with a microcomputer. However, the design described

is presently being proposed by RCA to NASA for the Shuttle (NASA document MSC5144

Rev. A). As shown in Fig. 3.4-1, it uses Manchester Bi-phase, and because it

contains its own clock information, it permits a two wire data output mechanization.

The receiver/driver, the synchronization detector, the address decoder, and the

cyclic error detector/encoder are incorporated in this RCA design using PMOS

technology. Because PMOS has a limited temperature range, i.e. -200C to 1000C,
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MODULE INTERFACE

Cpt1)
+28 v I 28 Vde +4 SWITCH WHEEL-I FUNCTION / A

0 V dc 2 Vd 1, (1) 121 /S

SWITCHIN: TYPE
REGULATOR & T
TRANSFOIRMER Cp 1 .FUNCTION / "

ll '(1)T(2)

BUS HI BUS INTERFACE A/D SWHEEL

BUS LO UNIT FUNCTION FUNCTION

T 5CLOCK/SCALER

ZONE) D F. H C

SPEC THERMAL -- W p SPECIAL / -
I Cy(N)-D'DICATED CLOCKPULSE TORO

FUNCTION FUNCTION As Required

PO SFUNCTIONPP.

27

S.F.
(4)

ZONE N -

lote: 1. R.P,-REG. POWR. (4"

2. Cp(NI-DEDICATED CLOCK PULSE.

I .F. IN)-TYPE OF SWITCHING FUNCTION . .. . ....

. 3 DIGITAL n SWITCHING " -

FUNCTION 'A FUNCTION As Required

FUNCTION

Fig. 3.3-1 Block Diagram of High Performance.Strapdown Gyro Module
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-- ODULE INTERFACE

+28 Vdc I 28Vdc SWITCH WHEEL
to FUNCTION EA

0 V de 28 Vdc it!. (1) (2) S
SWITCHING TYPE
REGULATOR & T
TRANSFORMER Cp(2)
FUNCTION /- 12 WHEEL

A, (I 121 0

i BUSINTERFACE A/D WHEEL
BUS LO UNIT FUNCTION FUNCTION Cj

T CCpNT) 5

CONTROL FUNCTION FUNCTO

NW"ADD O"A RP-G SUPR As",

ELE TNSF. PTORO.

2, FUNCTION FUNCTON PULSE

TEMPCTON F TOI

SANALOG

FUNCTION

Fig. 3. 3-'2 Block Diagram of Moderate Performance Strapdown Gyro Module
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MOOULE INTERFACE

02 d 8Vdc i4 "l SWITCH
T8 N WHEEL

SWITCEIING TYPEj

TRANSFORMER S.F

Bus H I R SF.
S- BUSINTERFACE A/D WHEEL
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(See Section 2. 8)

DIGITAL SWITCHING
FUNCTION /S FUNCTION

A ANALOG
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Fig. 3. 3-3 Block Diagram of Low Performance Strapdown Gyro Module
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BI MODE SELECT

BUS - STANDARD INTERFACE UNIT (S.I.U.)

FROMTO (BI - L) TONRZ
O  

SYNC DETECT ADDRESS
DATA BUS RECEIVER & LOCK DECODER

COUPLING NR TO (BI -- LI FRONT END ADDRESS
TRANSFORMER DRIVER CLOCK ENCODER

FROM

SUBMODULE

CONTROL CONTROL

IN MUX . OUT DE-MUX
(TO BUS. AID (FROM BUS) D/A

FROM
P.V.R.

FROM TO
GYRO OR ACCELEROMETER GYRO OR ACCELEROMETER

SIGNAL ARRAY SIGNALARRAY
(DISCRETE, ANALOG) IDISCRETE, ANALOG)

(PACKED O) (LOOPTEST)
(PACKEDAV) * NRZ=Non Return to Zero
(LOOP TEST)

Signal/mness, definition per NASA MSC 05144 Rev A Variant A per above, Variant B inlout mux-dermux
control and function separated and in another sub-module. (.ee . ,. .4-)

Fig. 3. 4-1 Input Output Submodule

modification to a CMOS low power design (also RCA technology) is preferred. The

RCA design uses a 5 MHz bus frequency, although 1 MHz would be adequate for

this application. Placing the input/output multiplexer-demultiplexer (Mux-deMux),

with controls, in a separate submodule may give the input/output module greater

flexibility. That option is shown in Fig. 3.4-2.

The synchronization detector/lock and front end clock shown in Fig. 3.4-1

detects a synchronization signal as a message and by using a combination of phase

offset and lock, establishes that the message processing "front end" clock is

synchronized to within 1/8 bit time to the bus and is locked to this "sync" for the

total message and acknowledge duration; i.e., approximately 100 bits of message

time. Accumulated skew between the bus clock and the gyro or accelerometer module

clock does not exceed 3 nsec. in 100 bits. The skew specification accommodates

10 ppm blocks at both the sending computer and the receiving module.

The address decoder recognizes the module identification address and all

subfield data addresses within the module. After decoding the module identification,

the device enables all further address, cyclic, MUX or deMUX decoding. If, within

30



HYBRID MULTIPLEXED A/D CONVERTER

32 INPUTS
CMOS 8 CHANNEL MUX 12 BIT RESOLUTION

8 INPUTS

8/1 MUX

4/1 MUX Sample hold - 12 BIT

A/D

End-of-Data Conversion
START

1 - I CONVERT

8 - A/D CONVERTER

CONTROL

LOGIC CLOCK

INPUT

Fig. 3. 4-2 Hybrid Multiplexed Anolog-to-Digital Converter

a certain number of message bits, it does not code "true", it puts all downstream

functions to inhibit/clear/standby/"go to sleep" status, and awaits the next

synchronization "alert". In addition, the decoder is capable of sensing a "time

tag" message, identifies it, and upon completion of the error check, strobes the

update time from the computer into its own time tag register, which then continues

to count on the local clock oscillator. The "group" alert message may be used to

set a group for either a synchronous local time update or a readout "N" clock times

after the message.

The address encoder encodes all local address information in a message to

the computer.

The time tag register is maintained closely synchronized with the computer

by the decoded group alert message.

The cyclic coder/error detector looks for errors in the messages received

and, when an error is detected, it inhibits action. It also forms a cyclic code addendum

to the address encoder message. (A simpler parity check system could be used as

an alternative).
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The input/output control and multiplexer-demultiplexer processes data from

the computer to the module and vice versa.

An analog-to-digital (A/D) converter, with part of the multiplexer section is

shown in Fig. 3.4-2. Many self-contained A/D packages, some fully hybrid, are

becoming available off-the-shelf. An A/D hybrid module for the B1 aircraft is

currently going into production and could be used without alteration. CSDL is using

similar devices in the Fly-by-Wire program for the NASA Langley Research Center.

The A/ D section operates continuously in module testing. In flight it is required

to respond with only one "page" of data per second. Therefore, the A/D power

duty cycle may be 10% or less in actual flight.

3.4.2 General Purpose Clock Submodule

This submodule, shown in Fig. 3.4-3, contains an off-the-shelf crystal clock,
a scaler set to provide any frequencies needed for the candidate gyros or ac-

celerometers, and a ROM decoder which accepts a hardwire code (A, B, C, D) to

call up the required set of frequencies on the appropriate lines.

Without temperature control, the oscillator accuracy is nominally 10 ppm.

This accuracy is sufficient for the low and moderate cost module. The oscillator

performance is 1 ppm when temperatureis controlled to plus or minus 10 degrees

F. This requirement will be specified for the higher performance modules. The

logic is essentially a dielectrically isolated CMOS, or SOS-SMOS, for operation at

1 MHz or higher. If cost savings result, bulk CMOS can be used for operation at

less than 1 MHz.

Tables 3.4-I and 3.4-II show a preliminary breakdown of the typical frequencies

that may be required from the general purpose clock and scaler.

The target power specification for the clock and scaler submodule is 100 mw.

3.4.3 Temperature Controller Submodules

For low performance modules a simple ON/OFF type controller is probably

sufficient. This approach minimizes the power and volume required for the function.

However, in the two higher classes of modules, range proportional control is necessary

for set point accuracy and temperature stability. A pulse width modulated proportional

controller or a digital controller is recommended. The peak start-up power to
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+VC -

GND. -

CRYSTAL MAIN SCALER

OSC. WHEEL SUB-SCALE DIGITAL 0 LOCK

f 2 9 x 32 x 53 x N OUTPUT STEERING CONT.

A--
B -- ROM M

C- _ DECODED--

AUX. SYNC SUSP. S.G
LINES SYNC SYNC

INTERROGATE 0
CONTROL

WHEEL DRIVE
SYNC LINES

A, B, C, D lines set up through the ROM appropriate output sync lines for up to 16 selections of gyros or
accelerometer frequencies. Selection input field and auxiliary sync lines may be expanded if desired.

Fig. 3. 4-3 General Purpose Clock and Scaling Module

some zone heaters can be as high as 30 watts which can create switching problems.

Possible solutions and alternate temperature controller designs are discussed in

Section 3.7.

The high performance candidate gyro can have as many as eight zones of

temperature control; compared to one or two for typical instruments. This situation

creates a volume efficiency problem or a redundancy opportunity for this submodule.
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Table 3. 4-I Candidate Frequencies For General Purpose Scalar Gyro
Or Accelerometer Modules

SUSP/SIGNAL GENERATOR INTERROGATE OR
DIGITALLY PHASE LOCKED WHEEL DIGITALLY PHASE LOCKED TORQUE SCALING TEMPERATURE

DRIVE FREQUENCIES TO WHEEL OA FREQUENCIES CONTROL

ALL WHEEL FREQUENCIES ALL WHEEL SUSP.

10 (SPLIT) 20 30 MAY BE OPTIONALLY OR S.G. FREQ. MAY

USED - IN ADDITION BE OPTIONALLY 1
400/800 400/800/1600 400/1200/2400 THE FOLLOWING SHOULD USED IN

BE AVAILABLE ADDITION

800/1600 800/1600/3200 800/2400/4800 12,800 102.4 (PWM ONLY) 10

1200/2400 1200/2400/4800 1200/3600/7200 25,600 204.8 (PWM ONLY) 30

1600/3200 1600/3200/6400 1600/4800/9600 28,800 50

51,200 100

200

3.4.4 Pulse Torque Electronics Submodule

A block diagram of the pulse torque electronic (PTE) submodule is shown in

Fig. 3.4-4. This submodule will require major design effort to produce a loop

capable of functioning with a variety of different gyros or accelerometers. Selectable

components external to the main PTE hybrid package will be required to adjust

gains, phasing, torquer current, etc., for the specific gyro or accelerometer.

For a given gyro rate capability, the torquer power will be directly proportional

to the torquer resistance and angular momentum, and inversely proportional to the

torquer sensitivity. The instrument designer generally tries to package as much

torquer sensitivity per unit resistance in the available space alloted in the inertial

component. This method of increasing rate capability is optimum because lowering

the angular momentum will decrease torquer power, but at the sacrifice of drift

stability. The same comments apply equally to accelerometers.

The relationship between equivalent input axis rate and torquer power is plotted

for four gyros in Fig. 3.4-5. Fora 60 deg/s rate input, the 18 IRIG Mod-B requires

3 watts of torquer power and the 13 IRIG requires less than 0.1 watt. For applications

requiring high dynamic rates a low momentum instrument, such as the 13 IRIG, is
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FE E Y 1POWERS OF:
FREQUENCY (Hz) 1 )  USED ON:

2 3 5

10 TEMPERATURE CONTROLLER 1 0 1

20 TEMPERATURE CONTROLLER 2 0 1

50 TEMPERATURE CONTROLLER 1 0 2

100 TEMPERATURE CONTROLLER 2 0 2

200 TEMPERATURE CONTROLLER 3 0 2

400 WHEEL DRIVE 4 0 2

800 WHEEL DRIVE 5 0 2

1000 3 0 3

1200 WHEEL DRIVE 4 1 2

1600 WHEEL DRIVE 6 0 2

2000 WHEEL DRIVE 4 0 3

2400 WHEEL DRIVE 5 1 2

3200 WHEEL DRIVE 7 0 2

3600 WHEEL DRIVE 4 2 2

4800 WHEEL DRIVE 6 1 2

6400 WHEEL DRIVE. 8. 0 2

7200 WHEEL DRIVE 5 2 2 (2)

9600 WHEEL DRIVE 7 1 2 (3)

12,800 S. G. 9 0 2 (4)

1.000,000 BUS INTERROGATION 6 0 6

(1) Frequency = 2x * 3Y' 5z

where,

X = powers of 2
Y = powers of 3

Z = powers of 5

(2) 9.0 MHz is required to attain a 7200 Hz symmetrical (square) wave.

i.e.
9.0x 106

-- = 2x5
4

7.2 x 103

Since 54 dividers are not symmetrical, a multipleof 2 is present for squaring.
A 7200 Hz nonsymmetrical clock pulse can be derived from 4.5 MHz.

(3) A direct symmetrical divider for 9600 Hz, and all frequencies below it,
would require a 36 MHz crystal. For a number of practical reasons, the
crystal frequency should be close (within, say 20% of) to 10 MHz.
Therefore, a 9600 Hz symmetrical square wave will be derived by frequency
multiplier.

(4) A direct symmetrical divider for 12,800 Hz, and all frequencies below it,
would require a 68 MHz crystal. Using a 10 MHz crystal, 12,800 Hz will be
derived from 6400 Hz with a multiplier.

Table 3.4-II General Purpose Scalar For Gyro or Accelerometer Module
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)

LEVELSHIFT
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COMPENSATOR

H LOGIC: S1 S4
S2= S3
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FROM DIRECT .2 VDC r 1 S1. S3

SCALEOR 
1  

CONST' CONSTANT CURRENT TO H SWITCH

AMP.

May be alternatively located at accelerometer or gyro for reduced noise.

(1) Varies as a function of specific device and full scale range desired. Must be adjusted by simple
changenp of external components.

Fig. 3.4-4 Functional Diagram of Pulse Torque Electronics
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Fig. 3. 4-5 Torquer Power vs Equivalent Input Axis Rate For Four Gyros
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the only instrument available to meet that requirement. To obtain scale factor

performance in the one ppm range, torquer power should not exceed 3 watts. This

level of power dissipation in the available volume is commensurate with state of

the art semiconductor circuit design. To obtain performance better than 1 ppm,

power should be limited to the lowest possible level.

3.4.5 Pulse Torque Power Supply Submodule

The low and moderate performance modules will not require any additional

voltage regulation. This submodule, therefore, will only be required in the high

performance module, and will regulate the +15 Vdc for the precision voltage reference

(PVR) and other required voltages to 0.01%. Series regulators of standard hybrid

or IC design can be adapted to perform this function. The regulator will derive

power from the 1% line pre-regulator, restricting the compliance range and resulting

in an efficient design.

3.4.6 Precision Voltage Reference Submodule

A single, precision, voltage reference (PVR) submodule design, with selection,

processing and external options to account for rising scale factor stability

requirements, Fig. 3.4-6, will satisfy the requirements of the three classes of inertial

instrument modules. Functionally, the PVR module contains;

1. A basic hybrid substrate design.

2. A basic array and interconnections for two Zener diodes, and fixed

precision resistors.

3. A buffer amplifier to provide buffered reference(s) to the A/D and

regulator functions.

4. An array of MSI Logic (or ROM) for mode/scaling control by digital

inputs to provided terminals.

5. Terminal points for the connection of scaling resistors.

The submodule substrate is the same for the three classes of modules. The

low performance module, requiring a scale factor stability of 100 ppm, will utilize

the circuit elements with no burn-in or aging requirements, and good quality

off-the-shelf diode chips will suffice. Resistors can be .01% and no temperature

compensation is required.

Provision for scaling resistors to provide a low voltage alternative for those

instruments requiring a low torquing current could be included as an external option.
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P.V.R. MODULE

THERMAL CONTROLLED
SUBSTRATE

+V (1) . NOM. 6.2 VDC
P.V.P.V.R.

POW'R. GND.
SIG. GND.

+VC (2)

MODE CONT.
A =l MODE ENABLE/CONTROL

B

C (LOGIC)

P.V.R.
SCALING NOM. 6.2 VDC

FUNCTION +-N

Terminals Reserved
For Ext. Prec. Scale (1:N)

Resistors (Vishay)

Fig. 3.4-6 Precision Reference Module

Also, the multi-level switching chips (logic and FETS) might not always be required

for the low performance PVR submodule. This version includes a buffer amplifier(s)
so that it can be used as a bus reference, for a plurality of devices (gyros or
accelerometers) and A/D encoders. This multiple usage contributes to lower cost.

The moderate performance module (providing a scale factor stability of 10
ppm) uses the same parts as the low performance module, but the burn-in and fine
adjustment necessary to obtain the improved performance would be included.
Multi-level switching FETs and control logic would be mounted on the substrate to
accommodate optional uses as required.
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The high performance module requires a scale factor stability of better than

1 ppm. This PVR submodule is essentially identical to the moderate performance

PVR with the added requirement for independent temperature control by means of

a wrap-around miniature oven (positive temperature coefficient semiconductor) or

a substratemountable, active, zone temperature controller located close to the PVR

zener reference diodes.

3.4.7 Switch Drive Submodules

Four switch drive functions are conceptually shown in Fig. 3.4-7. A versatile,

dual switch submodule will be employed in one of these four variations to accomplish

all the switching functions. The four types of switches, types 1-4, are described

as to function and operation as follows:

Type 1: This configuration is commonly used when driving a load that must

be isolated thru a transformer and for direct ac switching regulators.

The clock scaler module delivers a zero and 1800 set of pulses that

toggles QA and QB consecutively to generate a symmetrical square

wave at the transformer secondary. QA and QB are transistor switches

which may be mechanized as one or two pre-stage switches and

associated resistors.

If both QA and QB are "off" for 60 electrical degrees in each

half cycle, a 3 state symmetrical wave with 3rd harmonic suppression

is generated. This wave has proven useful in reducing filter component

size with certain ac loads and for general noise reduction.

Type 2: This type switch is essentially two type 1 switching functions driven

with appropriate timing waves. When the ac load is floated, eliminating

the need for transformer isolation, this switch is appropriate. Also,

both symmetrical and non-symmetrical 3 state drives (+,0,-) or

symmetrical and non-symmetrical 2 state drives (+,-) (+,0) (0,-) can

be used. A single standard H (4 transistors) configuration could

perform both type 1 and type 2 function but the effect on both volume

and cost would be adverse.

Type 3: This switch type is specifically configured for use with pulse torque

electronics. For the low performance modules and some of the

moderate performance modules, this configuration as shown is

adequate. However, some moderate and the high performance modules
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Fig. 3. 4-7 Switch Drives
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will probably require higher performance transistors. Otherwise,

three type 1 switches are connected to produce a type 3 switch.

Type 4: This configuration is useful in temperature controllers for heater

drive, i.e., drive up, then relaxation or cooling. Either QA or QB

or both in parallel are implemented as required. QA and QB can

also drive separate heaters for two-zone controls.

3.4.8 28 Vdc Power Conditioning Submodule

This device connects to the aircraft grade, 28 Vdc power, (or other 28 Vdc

source) with a tolerance of -6 to +4 Vdc and regulates its output to 1%. This conditioned

dc is thereby isolated from the 28 Vdc bus, and used for all module power except

heater power (the heaters, because of their high start-up demand, use unconditioned

28 Vdc bus power). This submodule is essentially a switching regulator designed

with a free running multivibrator on the input side to insure self-starting in the

inertial instrument module.

Once the clock and scaler module is functioning, the regulator is synchronized

by photo optic coupling to its normal conversion frequency. 25 to 50 kHz is the

probable range of the synchronization frequency.

Secondary circuits with voltages less than 20 Vdc could employ Schotky diode

rectifiers to obtain efficiencies as high as 70%. In applications where regulated

prime power is available, this submodule could be eliminated with an attendant saving

in volume and power requirements.

3.5 Module Volume and Power Estimates

3.5.1 Volume Estimates

Assuming dense hybrid packaging, volume estimates for the circuitry described

in the previous section was performed. Packaging in this analysis was based on

non radiation hardened designs. Electronic designs hardened for DOD type radiation

application would require approximately 20% more volume. The pulse torque power

supply (PTPS) and the power conditioning submodule are the largest submodules

(each are 4.1 cubic inches) used inthe strapdown inertial modules. For the following

volume estimates, it was assumed that only one of these two submodules are used.

This seems reasonable since: (1) the PTPS is only required in the high performance

module and (2) power conditioning may be performed outside the module or (3) another
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power source which does not have to be conditioned may be available. The results

are summarized in Table 3.5-I. This analysis shows a total of three possible module

sizes.

1. A small gyro module with a volume of 25.9 cubic inches is predicted

for gyros with a volume of less than 4 cubic inches. (These gyros include

Timex, IG-10; Honeywell, GG1111; Northrup, GIG6; Lear-Siegler, 1903

HJ; CSDL, 13 IRIG and Kearfott 2544.)

2. A moderate size gyro module with a volume of 41.9 cubic inches is

predicted for gyros with a volume of less than 12 cubic inches. (These

gyros include Northrup, K7G, CSDL, 18 IRIG and CSDL, TGG.)

3. An accelerometer module with a volume of 21.6 cubic inches is predicted

for instruments with a volume of less than three cubic inches. (These

accelerometers include the Kearfott, 2401, CSDL, 16 PM PIP and

Honeywell, GG177.)

These estimates are based on high density electronic packaging. To reduce

costs, a less dense packaging technique might be appropriate. Trade-off studies of

electronics size, reliability and costs were not performed for this study and are

suggested for future investigations. The electronics and interconnections account

for 17.9 cubic inches in the gyro module. Thus the gyro volumes (4 t o 12 cubic

inches) do not appear to be an excessive percentage of the total module volume.

Efforts to reduce gyro volume below the 4 cubic inch level will not significantly

decrease the total strapdown module size.

Table 3. 5-I Module Volumes (Cubic Inches)

GYRO ACCELEROMETER

SMALL MEDIUM SMALL

Electronics 7.8 7. 8 6. 8

Interconnect 10.1 10. 1 8. 8

Gyro or Accelerometer 4 12 4. 0

Mechanical Hardware 4 12 4. 0

25. 9 41. 9 23.6

TRIAD SYSTEM VOLUME

(3) Small Gyro Modules + (3) Accelerometer Modules 148. 5 in. 3

(3) Medium Gyro Modules + (3) Accelerometer Modules 196. 5 in. 3
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3.5.2 Power Estimates

Table 3.5-II shows lower and upper limit power estimates for gyro and

accelerometer modules and the contributing load from each submodule. Non-
radiation hardened designs are assumed; hardened designs for DOD application

require approximately 10% more power. The minimum gyro module load is 4.61
watts, and theminimum accelerometer module load is 2.61 watts. A triad gyro

and accelerometer strapdown system using the small low angular momentum gyros

Table 3. 5-II Strapdown Module Power Estimates

GYRO ACCELEROMETER

Regulated Unregulated Regulated Unregulated
Power Power Power Power

Submodule Minimum Maximum Minimum Maximum

Wheel supply 2.0 5.1

Suspension 0 .40 0 .40

S. G. .21 .21 . .21 .21

Temp Controller .2 .2 1.0(2) .2 .2 1.0 (2)

PVR .1 .1 .1 .1

A/D ( 1)  .2 .2 .2 .2

I/O .4 .4 .4 .4

Clock/Scaler .1 .1 .1 .1

PTE .3 5.0 .3 2.0

PTPS .1 2.0 .1 .80

TOTAL a) 3.61 a)13.71 c) 1.0 a) 1.61 a) 4.41 c) 1.0

Regulator Loss (b) 1.08 4.11 .48 1.32

Total Regulated 4.69 17 . 82 2 . 09 5.73
(a+ b)
Total Regulated 569 18 .82 3.09 6.73
plus Unregulated
(a+b+c)
Total without
Regulated Loss 4.61 14 .71 2 .61 5.41Regulated Loss
(a + c)
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and assuming power regulation is not needed would require 21.7 watts. The upper

power requirement for a triad gyro and accelerometer system would be 76.6 watts

if the high angular momentum gyros are used, less power efficient accelerometer

modules are used, and the requirement that power regulation be performed in each

inertial component module is invoked.

(1) The A/D device takes a peak power of 2 watts. By power mode control

this device is full "ON" only 10% of the time in non-test or flight usage.

During laboratory tests it may be full "ON."

(2) The heaters have a peak demand of 10 watts/zone at start-up. The

average heater power requirement, after stabilization, of 1 watt can be

further reduced by more exotic thermal control strategies but at an

additional expense.

3.6 Submodule Materials and Processes

To achieve the performance, flexibility and reliability required for the

functionalized module concept at low cost will depend to a large extent on the choice

of effective materials and processes for the submodule fabrication. Hybrid substrates,

component selection and attachment, deposition techniques, chip types, multilayer

boards and connectors currently available or anticipated as mature technology in

the next two to three years form the basis of the design study and comments on the

more important elements are included in the following paragraphs.

1) Hybrid Substrates

For the present, the assumption is made that the materials selected

will not be influenced by radiation levels. Radiation levels which would

substantially degrade, temporarily or permanently, the materials identified

are not anticipated.

Basic to the design and fabrication of hybrid circuitry is the method of

semiconductor attachment. Of the many methods proposed and actually used,

only two have gained wide acceptance. One is the familiar chip brazing followed

by bonding using thermocompression with gold wire or ultrasonic with aluminum

wire. Good chip brazing provides the best thermal transfer out of the chip.

Epoxy bonding as a substitute for brazing has gained wide acceptance and

offers several advantages. All of these operations tend to be tedious and

repair is not facilitated. The second method uses a special chip with beam
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leads formed on it. The chip can be placed face down and all the leads bonded

simultaneously. Conceivably, all the leads of all chips on one circuit could

be bonded at once. The major drawbacks are the need for special chips and

the lower power dissipation capability of the chip. We have chosen to use

beam leads wherever possible and epoxy and wire bonded chips when beam

leads are not available. Such techniques as spider bonding, evaporated

connections, BLIP and planar coax, as possible means of avoiding chip

processing problems, have not been considered in this study because these

schemes have not yet passed into the pilot line or production stage and their

use would pose a substantial risk.

2) Selection and Attachment of Components

The conductor area which mates with the semiconductors should be pure

gold, either plated or fired, for good bonding. Solder does not bond well to

gold; therefore, a second conductor material such as a platinum-gold alloy
should be used where soldering is to be done. Only brazing and/or

thermocompression bonding techniques should be used.

Thick film resistors are recommended down to 1% tolerance. For lower
than 1% tolerance, photo etched metal film resistors (such as built by Vishay)
should be used. They should be bonded in place and soldered or conductive

epoxy connected. Small chip resistors (30 x 30 mils and 5 to 10 x 105 ohms)
may be used in place of the thick film resistors. These are secured with
adhesive and wire bonded.

Chip capacitors should be used in most applications. They should be
connected in the circuit using solder or conductive epoxy. Small value capacitor s
may be silk screened, particularly if it is necessary to screen crossovers.

The capacitors can then be made at the same time. Inductors should be mounted
as discretes using epoxy to attach them to the substrate and solder or conductive

epoxy to connect them into the circuit.

The package should be all alumina for strength and thermal conductivity,
except for the kovar top, which is brazed or soldered in place. Leads should
exit on approximately 50 mil centers. The maximum cavity size accommodates
a 1 x 2 inch hybrid circuit. The hybrid circuit should be cemented in place
in the package and connected to the input-output leads using wire bonding.

Since many square waves are used, considerable care in packaging to
reduce noise is required. This reduction can be accomplished by spacing
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critical leads as far apart as possible and by the liberal use of ground planes

in mother boards and on the backs and covers of hybrid packages. Lines on

the mother board can be separated by separate ground lines where necessary.

The high power density caused by dense packaging requires that special

attention be paid to the thermal design. Thermal problems can be solved by

designing mechanical members, electrical connections, and connectors as

adequate heat paths in preference to the introduction of additional material

for this function.

3) Size Estimates of Hybrid Circuits

Table 3.6-I shows the sizes of components used in calculating the total

areas necessary for hybrid circuits. These areas are estimated conservatively

to allow for alternate production techniques and to encourage high yields.

More dense packaging might allow a reduction in size of up to 50% but at a

substantial increase in price, and with added problems in assembly and possibly

reduced reliability. Components such as inductors are sized on an individual

basis. They are normally approximated by using twice the square of the

diameter or twice the major area of the component.

The hybrid circuit is contained in a hermetic package to prevent

deterioration from the atmosphere with time. The maximum circuit thickness

is normally 0.125 in. The dimension of the thickest component determines

the thickness of the package. A rugged top and bottom, adding .075 in, is

necessary because of the anticipated large size of the substrate (about 1 in x 2

in). The wall of the package adds .075 in to the sides of the package and the

wall. Package internal input/output pads add .125 in to each side where leads

exit.

Two principal approaches for interconnecting the packaged hybrid circuits

are to connect the hybrid to a PC card mounted on a header and plugged into

a mother board system, or to provide each hybrid circuit with an edge card

type connection instead of leads. The second approach reduces the volume

considerably but introduces problems in providing adequate thermal paths in

the assembly. In addition to the packaging volume required for interconnecting

a hybrid board into a submodule, an additional volume is required to intercon-

nect these submodules. For the module volume estimates in Section 3.5, it

was assumed that the submodule's interconnections are 1.3 times the volume

of the electronic submodules.
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Table 3.6-I

Hybrid Circuit Sizing Information

Area

(Sq. In.)

1% Resistor .03

.01% Resistor .10

Diode .03

Transistor .03

OP amplifiers .04

Logic Circuit 16 leads .06

LSI 36 leads .12

Capacitors (NPO)

10-180pf .03

180-100pf .03

100pf-.015mf .20

Capacitors (k8000)

.01-.056 mf .03

.056-.27 mf .08

.27-1.5 mf .30

1.5-3.3 mf .70

Terminals .01

3.7 Thermal Design Factors - Introduction

The design of a temperature control system for the standardized, strapdown

inertial component modules is primarily dictated by the module performance

requirements, the impact on the standardization and submodularization concepts

costs, and reliability. An efficient thermal design results from an optimum

combination of control of the thermal impedance of the mass to be temperature

regulated and the design of the associated temperature controller. Various methods

of regulating the thermal impedance between a heat source and a heat sink include

the use of mounts to decrease thermal contact, the employment of additional fasteners

or filler materials to increase thermal contact, the application of different surface

finishes to control radiation, the orientation of certain surfaces in order to heat or

cool by convection, the use of radiation louvers, the use of thermal fuzz, the control

of coolant temperature and flow rate, use of heat pipes, etc. The prospects for
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combining the use of these thermal impedance techniques with the standardized and

modularized concept designs without excessively proliferating the affected

submodules appear unlikely. The temperature controller design will have to bear

the principal burden.

The design of the temperature controller is dependent on the type of temperature

sensor and thermal power source used. Thermostats, thermistors and resistance

wire are the most frequently used temperature transducers. Typical thermal power

sources are: conventional heaters, thermoelectric elements, and positive

temperature coefficient regulators. Other factors influencing the temperature

controller design are inertial component characteristics such as, the power/heat

dissipation rate, temperature sensitivity, thermal response, sensor and heater

location and thermal resistance.

The following types of temperature control systems were considered in this

study.

1. On-Off (Limit Switching)

2. Positive Temperature Coefficient (Passive Regulator)

3. Proportional (dc)

4. Pulse Width Modulated

5. Computer Programmed

6. Thermoelectric

7. Zonal

8. Heat Pipes

The first type, using a creep type bimetallic actuator, is simple, inexpensive

and accurate enough to provide the ±50 temperature control which is probably more

than adequate for low performance modules. Contact life limits the reliability. A

mercury-in-glass design provides better performance, still at low cost, and an

extended life characteristic. This unit would be used in conjunction with a simple

switch submodule to limit the contact switching currents.

A passive self-heating and temperature sensing device is another simple, low

cost temperature controller for low performance modules. In this system the voltage

is applied directly to the PTC element which self-heats to a predetermined

temperature at which point the resistance changes abruptly thereby regulating the

current and the heat input. At present these devices are available only at a limited

number of discrete temperatures. For the standardized module concept this type

of controller would be mounted on the inertial instrument submodule.
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Two types of controllers are available in the generic class of proportional

controllers, one analogue and the other digital. The digital type is identified as a

pulse width modulated controller. For moderate, and high performance modules, a

proportional controller with higher accuracy circuit components is required to

achieve a high performance submodule. Several of these controllers would be

required for those high performance applications where zone temperature control

is used for the gyro.

The pulse width modulated temperature control circuit can be adapted to be

remotely controlled by a programmed computer. By controlling the switching

frequency and the ratio of on-time to off-time of the chopper transistor with a pulse

width modulated (PWM) source, the rate of temperature change and the temperature

control can be programmed. In practice, this approach could include provision for

a lower inertial component temperature when the system is in standby to save power.

It could also respond to software initiated instructions to achieve flexibility for a

standardized design.

Two additional approaches to temperature control were also considered in

this study. These are thermoelectric and heat pipe.

Thermoelectric devices consist of pellets of dissimilar semiconductor

materials sandwiched between metal plates. They act as a bipolar heat pump, capable

of both heating and cooling depending on the direction of current flow. The bipolar

characteristic allows substantial savings in temperature control power by setting

the system operating point at zero nominal control power.

The thermoelectric devices can be controlled either by a DC proportional

controller or by a pulse width modulated controller. Compared to thermal control

systems using conventional heaters, power requirements for thermoelectric control

for some applications are reduced by 80 to 90%.

The dynamic response of a system using thermoelectrics can be far superior

toa system using only heaters. Thermoelectrics at low heat loads can also control

amuch greater heat flow than the power required to operate them. This advantage,

however, is offset by the low voltage required to operate these devices, causing

losses in the electric power conversion process.

Costs for thermoelectric control based on current technology are significant

and this approach would probably be used only as a special installation to satisfy a

unique system requirement.
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The heat pipe shown inFig. 3.7-1 is a high performance heat transfer device
which can transport heat at high rates with very small temperature gradients. It

consists of a container enclosing a volatile fluid that removes thermal energy from

one part of the container by evaporation and transfers this energy to another part
of the container by condensation. The capillary action of a wick returns condensate
to the evaporation area, providing continuous transfer of thermal energy with
essentially no temperature gradients. Two types of heat pipes are available, both
operating on the same principle. One type simply transports heat; the other type
also maintains a constant temperature. The constant temperature pipe includes a
reservoir at the condensor section. This reservoir holds a noncondensible gas
which provides a temperature- stabilizing gas-vapor interface.

Advantages of heat pipes in addition to their efficient heat transfer capability
are that they have no moving parts, are simple, and are completely self-contained.

Fin 3ct Pi

WICK LIQUID

RETURN ck
FLOW

VAPOR
CHANNEL

SHELL qou

Fig. 3. 7-1 Basic Heat Pipe Configuration
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Application of heat pipes in inertial systems has been as an integrated element

of the inertial instrument. In this context it does not affect the standardized

modularization concept. Further consideration of this approach external to the

instrument for use in moderate and low performance modules may be warranted.

4.0 Conclusions and Recommendations

This preliminary strapdown modularity study has presented the means and

advantages of developing common strapdown inertial component modules. The

significant gain in reduced cost of ownership with the modularity approach resulting

from ease of maintenance, increased reliability and producibility over present inertial

system design practices was discussed. It was shown that three classes of modules

(high, moderate and low performance) would be required to meet the various system

needs. It has determined a group of candidate instruments representing the three

performance classes and discussed the incompatibilities which must be taken into

account in a standardization program. Electronic design, hybrid packaging and

thermal control considerations as applicable to the different module classes were

presented.

To demonstrate the significant advantages of the modularity approach, this

study should be extended to a hardware demonstration. A typical hardware

demonstration might include the following phases:

1) determine a common module interface. The common inertial component

interface would be determined by studying the requirements for current

and anticipated spacecraft and military applications. Considerations

such as anticipated environments, available voltages and required

performance would be used to evolve a standardized mechanical and

electrical module interface.

2) test breadboard electronics with different inertial instruments to

demonstrate that a set of electronics can be constructed to mate with

the candidate instruments and yield a common interface with the required

level of module performance. This task should first approach the low

performance module application. The lower component cost and

performance required for that module will offer an economical

demonstration program. The program could then be extended to include

a limited number of moderate performance inertial components.

51



3) design and build hybrid circuitry to demonstrate that size, power, cost,

reliability and performance goals can be achieved with an actual design.

This task should be demonstrated on a single submodule. For example,

a pulse torque power supply can be designed and built as hybrid circuits.

Such a configuration will afford a demonstration of packaging techniques,

sizes, power component availability, reliability and performance. The

resulting hybrid module would be evaluated with the various inertial

components as described previously in phase 2.

In addition to the single-degree-of-freedom instruments used in this study, a

comprehensive modularity study should consider two-degree-of- freedom instruments

and multisensors.
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